If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-592x+20055=0
a = 4; b = -592; c = +20055;
Δ = b2-4ac
Δ = -5922-4·4·20055
Δ = 29584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{29584}=172$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-592)-172}{2*4}=\frac{420}{8} =52+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-592)+172}{2*4}=\frac{764}{8} =95+1/2 $
| (-9a+95)=(-2a+109) | | y=((5-19((5+29y)/19)/29) | | 2.5(2b-20)+3b=358 | | 5(2b-20)+3b=358 | | 3x^2-216=63x | | 3-2=13+3x | | 676=t^2 | | 3x^2-63x-216=0 | | -30+t=-42 | | y^2-0.6y=-0.08 | | 15+5x=4x+20 | | 5^x-2=50 | | -1/2+x=-2/5 | | -3x-2(x+1)=16 | | 89+5x-7=14x-1 | | 4/45=-1/5x | | 14=w/4+9 | | 91=-7m+14 | | 3/5=q/140 | | 9(q+2)=99 | | 40(x+60)=110x | | 7(v+8)=77 | | 7(v=8)=77 | | (-2)(4)=-3x+2 | | 6x+4x+3x=360-2x | | -2x+5=4+6x | | 3k=-33 | | -2+4=-3x+2 | | 3/g=g/12 | | 16-2t=4 | | 4n3=105 | | x/6=4/30 |